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1 INTRODUCTION M
Many materials have different elastic behavior in tension and compression.
A few examples of such materials are concrete, rock, tire-cord rubber, and soft

biological tissues. As early as 1864, St. Venant [1] recognized this behavior by

analyzing the pure bending behavior of a beam having different stress-strain

curves in tension and compression. Timoshenko [2] originated the concept of bi-

modulus (or bimodular) materials in 1941 by considering the flexural stresses in
§ such a material undergoing pure bending. Ambartsumyan [3] in 1965 renewed interest
in the analysis of bimodular materials, i.e., materials having different moduli in
tension and compression. Since then, there have been numerous investigations on
the static behavior of bimodular beams; these were surveyed by Tran and Bert [4].
Recently, Bert and Gordaninejad [5] studied bending of thick beams of "multimodular"

materials.

Only a few studies have been made on vibration of bimodular beams. Recently,

Bert and Tran [6] worked on transient response of thick beams of bimodular materials.
The present paper deals with the forced vibration of beams made of "multi- l

modular” materials. The transfer-matrix method [7], which computationally is very i
efficient, is applied. Also, the beam is modeled as a Timoshenko beam, i.e., both ;
1

transverse shear deformation and rotatory inertia are considered.

2 MODELING OF THE STRESS-STRAIN CURVE

The nonlinearity of the stress-strain curve is one of the main difficulties
arising in structures undergoing even moderate deflections. Piecewise lineariza-
tion of the stress-strain relation has been applied to overcome this problem.
Durban and Baruch [8] used a floating piecewise 1inear approximation to construct

the two "best" straight lines approximating the Ramberg-Osgood stress-strain relation

[9]. Bert and Kumar [10] recently presented experimental stress-strain curves




for unidirectional cord-rubber materials and expressed the curves in Ludwik
power-law form with different coefficients and exponents in tension and compres-
sion.

In the present work, a stress-strain curve for aramid-rubber taken from
[10] has been linearly approximated by four segments (two segments in tension
and two segments in compression; see Fig. 1). For choosing the "best" two straight
lines, the area between two fitting lines and the experimental curve in each por-
tion has been minimized. To find comparable moduli for the bimodular case, one
has to minimize the area between two straight lines and the experimental curve.
Finally, for the "unimodular" case, the "best" single straight line is used (see

Appendix A).

3 CLOSED-FORM SOLUTION

Consider a solid rectangular-cross-section beam of thickness h and length
1. The beam coordinates are taken such that the xy-plane coincides with the mid-
plane of the beam and the z-axis is measured positive downward. For a four-
segment approximation of the normal stress-strain curve, considering the general
case (i.e., when - h/2 < a. , a; < h/2), the following stress field has been

considered for the case of convex bending (see Figs. 1 and 2).

(E]c e]c + Ezc(ex- s]c) - h/2 <z < a.
€ ce a <2 <2
o =9 | X ¢ " (1)
E]tex z, <z <a,
\ E]te]t + Ezt(ex- e]t) a, <z <h/2
Tz = Oz (2)

where E1C.E2c,81t,:2t,s,e1°, and e]t are material constants, <y is the axial nor-

mal stress, €y is the axial normal strain, Yyz is the transverse shear strain, T2

is the transverse shear stress, and z, is the location of the neutral surface.
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Fig. 1 Multimodular model.

Fig. 2 Stress Distribution of a Multimodular Beam for
Convex Bending




It is noted that this material is linear elastic in shear.

1 and 2 leads to

e, = «(z~ zn)
c _

e] = x(ac- Zn)

C]t = K(at'Zn)

Using linear strain measure, one obtains

€ = U'x = u’x

Yz SW P U =W+
Comparison of equations (3) and (6) gives

u'x = -KZn 'y w’x = K

Note that ( ) % denotes 3( )/ax.

Comparison of Figs,

(3)
(4)
(5)

(6)

(7)

Timoshenko beam theory is implemented here, by using the definitions of the

normal and transverse shear stress resultants and moment, each per unit width as

follows: h/2

.0 =
-h/2

(oysTys

ez , M

2o, dz

One can write the constitutive relation for a multimodular beam as

N rA+c£ 3+c§ olf u, (a8 0
Mp={Bsch Decy O v, B" D' 0
Q 0 0 s ||w, v 0 0 5|

L
o X

(8)
o X
X (9)
+y

where A, B, D, and S denote the respective extensional, flexural-extensional

coupling, flexural, and transverse shear stiffnesses defined by
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h/2

h/2 2
c G dz (19)

j=1
(A,B,D) = J (l,z,zz)Ei<k)dz k=t s = K2
~h/2 “h/2

Here, the stiffnesses CQ, Cg, Ca, and Ca are not present in unimodular or bi-

modular materials (see Appendix B). In equation (10), t and ¢ denote tensile-

2 js the shear correction

strain and compressive-strain regions, respectively, and K
*

coefficient . The general equations of motion, if z, (neutral-surface location)

is constant along the beam are

AU yx ¥ B i T PUse * Ry Gy

XX
S(W'xx + w’x) = Pw,tt - q(x,t) (11)
(B'W yx * D0 xx) = SOV, + 0] = Ru 4o + Ty 4y
where h/2
(P’Rgl) = J p(],Z.ZZ)dZ
-h/2

and o is the density of material.

2

For guided-guided boundary condition, i.e.,

u(0,t) = u(e,t) =0 ; w(0,t) = v(e,t) =0

(12)
Q(o,t) = Q(z,t) = 0
if
q(x,t) = q, €0s ax cos at (13)
then the following sets of functions satisfy the equations of motion
u(x,t) = Usin ax cos at ; w(x,t) = ¥ sin ax cos qt (14)

w(x,t) = W cos ax cos ot

;In actuality, enforcement of the axial-free equilibrium equation of elasticity
requires that K¢ for a multimodular beam (even a single-layer one, such as treated
here) be a function of the level of normal strain (through tge piecewise segmenta-
tion of the stress-strain curve). However, in this paper, K
constant.

is assumed to be a
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where
Q=2sf , o = mn/L (m=1,2,3,...) (15)

f = circular frequency of the excitation, and

qo(Sa)(B'az-RQZ)

. (Sa2-Pa2){B'a2-R0?) (B"a2-Ra2) -(Da2+S-102) (A' a2-P22) 1+(Sa) 2 (A' a2-P02)
poAe-P 5 = —L_q - (Sa)(A'a2-Pa?)y j el
B'q2 - Ra2 Sa2-Pq? 'a2-R02
Since from equations (7)
2y = - U Y (17)
then
z, = B'a2-Ra? _ constant (18)
A'42-Pg2
4 TRANSFER-MATRIX SOLUTION
The transfer-matrix model used in the present study is the same as that
employed in [5] except for the station matrix (see Appendix C), which here in-
cludes more terms due to the motion. The transfer matrix for the assumed beam
is of the following form Ng-1
SRR LA LS BERAA RUSILS WP (19)

where [Tf]i is the field matrix, [Tsli is the station matrix, Ng is the number
of stations, a¢/2 is the length of each of the half fields at the ends of the
beam, A2 is the length of each of the whole fields, and [S]NS+1, [S]0 are state
vectors, i.e., (u,w,W.N,Q,M)T, at the two ends of the beam.

In the calculation of the stiffnesses for the cases where the axial force is
not zero, the neutral-surface location and the corresponding distances to the
“break points" (ac and at) in the g, Vs z curve are not constant and not known

a-priori. Therefore, an iterative technique has been employed to compute the

neutral-surface locations Z» also a, and a,. One must first assume (ZNS-+2)

S e e




sets of values of Z.s A, and ay and then compute the sitffnesses and solve the
governing equations for the state vector. Finally, by using equations (C.1),

(C.3), and (C.4), compute the new values of Z. A and a Obviously, if the

¢
, and a, are in sufficiently close agreement,

assumed and computed sets of Z.» aC

the problem is solved; otherwise, assume the calculated set Z.s 3., and a, and
repeat the procedure.
5 NUMERICAL RESULTS

The numerical results are presented for a thick, multimodular beam with a
rectangular cross section. The material of the beam is chosen to be aramid cord-
rubber which is used in automobile tires (see Table 1). Four different boundary
conditions are investigated (see Table 2) and comparisons are made between multi-
modular, bimodular, and unimodular models for each set of boundary conditions.
In this study, a mesh of twenty-five elements is used with each element being of

length of 0.32 in. The shear correction coefficient is taken to be 5/6.

In order to validate the transfer-matrix solution (TMS), Fig. 3, a compari-

son is made between the closed-form solution (CFS) and the TMS for a guided-guided
beam with cosine load distribution (case 1). Also, a comparison is made among

unimodular, bimodular, and multimodular (static and dynamic) cases (see also

Table 3) for f = 100 Hz. As one can see, there is excellent agreement between
the TMS and CFS results. However, this agreement can be improved even further
by increasing the number of elements.

For the other cases (2-4), the CFS is not available; therefore, in Figs. 4,
6, and 8 comparisons between different models (one, two, and four segment approxi-
mations) are made. As one might notice in all four cases, there is considerable
difference between transverse deflection of multimodular and bimodular beams on
one hand and that of the unimodular model on the other hand. In contrast, there
is no substantial difference between multimodular and bimodular results.

Another interesting observation in Fig. 4 is that for f = 100 Hz, the

unimodular beam is in the range of its first mode, whereas the bimodular and multi-




Table 1
aramid-cord rubber beam

Elastic properties and geometric parameters for an

i Longitudinal Young's Modulus, |Londitudinal-Thickness Shear:
i MPa (psi x 10-6) Modulus, MPa (psi x 10°3)
F Model* Tension Compression Tension and Compression|
.§ Et E;t E,¢ Ex°¢ G
=
M 4000 2896 221 71
& (0.580) (0.420) | (0.032) (0.01) 3.70 (0.537)
> t c
" Ey Ep
= | B 3240 124 3.70 (0.537)
s (0.470) _ (0.018)
Ll
E E
U 1896 1896 3.70 (0.537)
(0.275) (0.275)
2 5| Beam length 20.32 cm (8.0 in.)
| S
'é 2| Beam thickness 1.52 cm (0.6 in.)
M - 3
E,E Beam width 2.54 cm (1.0 in.)
*M ~ multimodular, B ~ bimodular, U ~ unimodular.

Table 2 Summary of cases considered

CASE
NO.

BOUNDARY
AND LOAD

CONDITION CASE
POSITION NO.

BOUNDARY CONDITION
AND LOAD POSITION
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Fig. 3 Comparison among multimodular, bimodular, and unimodular deflection
distribution for closed-form and transfer-matrix solutions of guided-quided
aramid-cord rubber beam (f = 100 Hz)
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Table 3 Comparison between CFS™ and TMS for an aramid-cord rubber beam
(case 1)*, f = 100 Hz

/1 N x 102, 1b Q x 10, 1b M, 1b-in.

CFS TMS CFS TMS CFS TMS
0.00 -0.169 -0.164 0.000 0.000 0.203 0.203
0.02 -0.168 -0.162 -0.198 -0.200 0.201 0.202
0.06 -0.157 -0.152 -0.585 -0.587 0.189 0.189
0.10 -0.137 -0.132 -0.935 -0.937 0.164 0.165
0.14 -0.108 -0.104 -1.226 -1.228 0.129 0.130
0.18 -0.072 -0.069 -1.141 -1.143 0.086 0.087
0.22 -0.032 -0.031 -1.565 -1.566 0.038 0.038
0.26 0.011 0.010 -1.590 -1.591 -0.013 -0.013
0.30 0.052 0.050 -1.514 -1.516 -0.063 -0.063
0.34 0.091 0.087 -1.344 -1.346 -0.109 -0.109
0.38 0.123 0.119 -1.089 -1.09 -0.148 -0.148
0.42 0.148 0.143 '| -0.766 -0.768 -0.178 -0.178
0.46 0.164 0.158 -0.394 -0.396 -0.196 -0.197
0.50 0.169 0.163 0.000 0.000 -0.203 -0.204
0.54 0.164 0.158 0.394 0.396 -0.196 -0.197
0.58 0.148 0.143 0.766 0.768 -0.178 -0.178
0.62 0.123 0.119 1.089 1.091 -0.148 -0.148
0.66 0.091 0.087 1.344 1.346 -0.109 -0.109
0.70 0.052 0.050 1.514 1.516 -0.063 -0.063
0.74 0.01 0.010 1.590 1.591 -0.013 -0.013
0.78 -0.032 -0.031 1.565 1.566 0.038 0.038
0.82 -0.072 -0.069 1.141 1.143 0.086 0.087
0.86 -0.108 -0.104 1.226 1.228 0.129 0.130
0.90 -0.137 -0.132 0.935 0.937 0.164 0.165
0.94 -0.157 -0.152 0.585 0.587 0.189 0.189
0.98 -0.168 -0.162 0.198 0.200 0.201 0.202
1.00 -0.169 -0.164 0.000 0.000 0.203 0.203
*

CFS ~ closed-form solution; TMS ~ transfer-matrix solution

+ 0.3305 0 < x/2 < 0.22
For case 1, Z = z_/h is piecewise constant, equal to{ - 0.3305 0.22 < x/2 < 0.78
n + 0.3305 0.78 < x/2 < 1.00
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modular beams are between their first and second modes. The explanation for this
is that, for this case (2), most of the layers of the beam are under compression
and since E1c, Ezc, and Ebc are much smailer than E (see Table 1), then the uni-

modular beam is stiffer than the other two. Therefore, the fundamental frequency

of the unimodular beam is higher than those of the bimodular and multimodular

beams.

Also, the distributions of u (axial displacement), § (bending slope), N (axial

force), Q (transverse shear force), and M (bending moment) are shown graphically
in Fiqures 5, 7, and 9 for f taken to be 100 Hz. Note that for cases 1 and 3

this frequency is less than the fundamental frequency, whereas for cases 2 and 4,
the frequency of 100 Hz is in the range of the first and second modes. The first
three mode shapes of a clamped-free beam of multimodular material is investigated

in Fig. 10. For this case, the natural frequencies associated with the first

three modes are f1 = 30.9 Hz, fz = 131.1 Hz, and f3 = 278.5 Hz.

Finally, by rewriting the equations of motion in a new form (N X = P] U gps

M,x -Q-= Iw,tt’ Q,x = qu;tt -'q(x,t)), the effect of transiatory and rotatory
inertia coefficients on axial force for a thick multimodular clamped-clamped
beam (f = 100 Hz) is studied (see Table 4). The results show the significant
effect of [ and slight effect of P1 as one looks at it through full theory

(vibration) as compared to the static case (I = Py =P, = 0).

6 CONCLUSIONS
An analysis of forced vibration of a thick beam with a rectangular cross
section and made of "multimodular" material is presented. In this study,

numerical results obtained by both the closed-form and transfer-matrix methods

are given for a beam made of aramid-cord rubber.
; Comparisons are made on one hand between closed-form and transfer-matrix

results and on the other hand, among unimodular, bimodular, and multimodular
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Table 4 Effect of translatory and rotatory inertia coefficients on axial
force for a thick multimodular cantilever beam (f = 100 Hz)

Axial force, 1b x 103"

x/L I,P,,P,#0 | I=0 P,&P,#0 | I&P;=0 P,#0 | P,=0 1I&P,#0 | I,P,,P,=0
Full Theory Static
0.00 11.74 11.76 -0.1399 -0.1621 -0.0699
0.02 11.49 11.51 -0.1399 -0.1621 -0.0699
0.06 10.56 10.58 -0.1399 -0.1621 -0.0699
0.10 8.90 8.92 -0.1399 -0.1621 -0.0699
0.14 6.69 6.73 -0.1399 -0.1621 -0.0699
0.18 4.15 4.19 -0.1399 -0.1621 -0.0699
0.22 1.44 1.48 -0.1399 -0.1621 -0.0699
0.26 -1.26 -1.21 -0.1399 -0.1621 -0.0699
0.30 -3.82 -3.76 -0.1399 -0.1621 -0.0699
0.34 -6.09 -6.03 -0.1399 -0.1621 -0.0699
0.38 -7.97 -7.91 -0.1399 -0.1621 -0.0699
0.42 -9.38 -9.31 -0.1399 -0.1621 -0.0699
0.46] -10.25 -10.18 -0.1399 -0.1621 -0.0699
0.50] -10.54 -10.47 -0.1399 -0.1621 -0.0699

"1 1b = 4.448 newtons

e o
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models. These results show a considerable difference between the unimodular and

bimodular models and a slight difference between the pimodular and multimodular

models. Therefore, although a four-segment model is a better approximation, the
two-segment approximation gives nearly the same results. This proves that the f

bimodular model precision is a good approximation.

The values of the first three mode shapes for the clamped-free case are pre-
sented. Finally, the effects of axial translatory and rotatory inertia coefficients
on axial force for a clamped-clamped beam are discussed.

The transfer-matrix method is found to be very effective in terms of compu-
tational time and also in terms of the accuracy of results, which agree very well
with the closed-form solution.
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APPENDIX A: FITTING MINIMIZED CURVES TO THE STRESS-STRAIN CURVE

1. Multimodular Case ;

Consider the nonlinear stress-strain curve shown in Fig. A.1. For any arbi-

trary point (et,ct) in the tension region (e>0), there are two straight lines

" {j(ot/st)e . (A1)
gle) = A.
[(o%- 0 /(et - eH e M +a

such that

The equation of a stress-strain curve is

a(e) = Ke" ) e >0 (A.2)

where K and n are constants depending on the material. To find the proper "break
point" (et,ct), the area between the approximated curve g(e) and the actual experi-
mental curve o(e) has to be minimized. The mentioned area can be expressed
et eft i?
A Ho (9 (=) - ofe) e + || Lyl - ole) 1o (A.3)

€

Substitution of equations (A.1) and (A.2) into equation (A.3) and performing the

integrations gives




——/

Fig. A.1 Multimodular model.

Fig. A.2 Bimodular model.

/
/

/

Fig. A.3  Unimodular model.
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n+l . n+l n+l
R G I R CA L TEFLRRL BN T R ]| (A.4)

By searching in the region of Q = (O,etf) X (0,0tf), one is able to find a point
(et.ot) such that A is minimized locally. Note that a few other methods (e.g.,
least-squares method) have been tried but it turned out that the absolute minimum
point was outside of the region q.

2. Bimodular Case

For this case, the least-squares method has been used. As shown in Fig. A.2,

there is a line such that
t

i 2
[ = J [Ebte- Ken] de (A.5)
0

can be minimized in Q. Here, Ebt is the slope of that line. By taking the

derivative of equation (A.5) and equating it to zero, one has

t
°f
—% = J [Ebte- Ksn]s de = 0 (A.6)
dEy, 0
By solving equation (A.6) for Ebt, one obtains

t 1

N~
£," = 3 (ch) (.7)

For example, for aramid-rubber in the tension region, the following parameters

are found (the other constants are listed in [10]):

.22 5 K = 1.0 x 100 psi eet = 0.029

=
o
"

6
. 1.22- .
gt = BT XT0) (0.029)"-221 = 0.47 x 105 psi | ,

An analogous calculation can be applied for the compression side of the bend, ;

i.e., Ebc can be found, provided that K_, n_, and Efc are known. f

c
A similar approach can be used to obtain a best-fit single straight line

("unimodular" approximation) [5]; see Fig. A.3.
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APPENDIX B: THE BEAM STIFFNESSES FOR RECTANGULAR-SECTION BEAMS OF MULTIMODULAR
MATERIALS

For the assumed four-segment model, there are two different hending cases in
general, convex downward and concave downward bending. In convex downward bending,
the top layer of a beam is in compression and the bottom layer in tension.

A stress distribution for convex downward bending is shown in Fig. 2. As
one might notice, the location of Z.s 3, and a, fall within the depth of the beam
(this is case is the most general case). Substitution of equation (1) into equa-
tion (8) and using equations (3), (4), and (5) leads to

a Zz at

(€ c c "¢ ot
N = [KE] (ac- zn) + <E,y (z - ac)]dz-+ <E; (z -zn)dz-+ <Eq (z - zn)dz
-h/2 a. z,
h/2
+ J [KE]t(at- zn) + zEzt(z- at)]dz (B.1)
3
and
3 Zn
= c, c c
M= [KE] . - zn) + <Ey (z - ac)]z dz+ | «E (z - zn)z dz
-h/2 a,
a, h/2
+ t t t
.<E1 (z- zn)z dz + [.<E.l (at- zn)+ KEZ (z - at)]z dz (8.2)
Zn at

Equations (B.1) and (B.2) can be written in the following form

a Y3 a h/2
N = (-2 ){[ ‘ £.%dz + ne Cdz + tE taz + £.tdz]
I<zn 2 1 1 2

-h/2 aC zn at

a, a. h/2 h/2
Cc o t t
-h/2 -h/2 a ay
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(ac Za at ’h/2
+ (<){[J Ezcz dz +j E1LZ dz + ; E]tz dz +j Eztz dz
-h/2 a. z, a, :
K a h/2 h/2
+ [ ‘ £.% dz + [ £,% dz + £ tadz-
] 2 3 1% 1 8¢92-
-h/2 -h/2 a

t .
E2 atdz]) (B.3)

‘

t ¢

z

c n {

M= (-«z ){[{ Ezcz dz+-{ E]Cz dz + j E]tz dz + j £t dz]
z

. 2, h/2 h/2 ;
f ¢ c ( t t ‘
+ [ j E,7z dz+ Ey "z dz +J Ey"z dz- E,"z dz]
3 3 g
a z a h/2
c n t
+ (<){EJ E2C22d2-+[ E]szdz+ J E]tzzdz+ (

-h/2 a, z, at

t.2 5
E2 2°dz] ;

a a h/2 h/2
+ [ Ezcacdz+-J E,fa dz+ ( £, "a,dz - J E, 2, dz]) (8.4)
~h/2 -h/2 a, 3

Combining equations (7) and (9), one gets

N = (-<zn)A' + «B' (B.5)

M

('Kzn)B" + «D' (B.6)

Comparison of equations (B.3) and (B.5) with equations (B.4) and (B.6) and

considering equations (10), one finds that

ac h/2 |
N t t
CA = [ (E]C-Ezc)dz + f (E-l - Ez )dZ i i
-h/2 at i
a, h/2 |
N _ c c t t
Cg = f (E,"-Ey)adz + f (E;"-E,")a,dz |
-h/2 a

i
]
i

t
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e m,

a h/2
DM = f (E1C- Eac)acz dz + [ (E]t- Ezt)atz dz (8.7)
-h/2 a,

Eight possible cases may occur depending on the location of zs 2.,
and a - These cases have been analyzed as the same as the general case as follows
(for convex downward bending).

There are seven more possible cases which have been discussed in Ref. [5].
However, the case explained here is the most general case.
APPENDIX C: TPANSFER-MATRIX FORMULATION

Under harmonic excitation, the steady-state-response displacements u, w, and
, are also harmonic in time. Therefore, equations (11) can be written as

N <= Q2Pu - 2Ry 3 Q K=" Q2Pw - q(x,t)
’ i (€c.1)
M « " Q@ = - o2Ru - Q2Iy

where all of the barred quantities are amplitudes, i.e., N(x,t) = N(x) sin at, etc.

The continuity at each station implies

-R_ =L -R_-L -R_-L
u;” = g s Wy Wi s b vs (€C.2)
(R and L denote right and left, respectively)
Also, equation (C.1) in finite-differential form for each station i is
fR_sL_ opml . aR_al _ =L =
Ni© = NyT - efhum s QT = 0y - eyt - (c.3)
-R_-L_z‘l._z'l.

where Qi is the conceﬁtrated load amplitude at station 1.

Equations (A.2) and (A.3) are written in matrix notation as

P

H

4

i-i

!
!
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-\R ~ - L
f u\ 1 0 0 0 0 o0 O ] ( u )
W 0 1 0 0 0 0 O W
pf 0 0 1 0 0 0 O Y
NP =1]-222 0 -2 1 0 0 0 { N B (C.4)
Q 0 -a2p 0 0 1 0 Q Q
M Q2R 0 -221 0 1 0 M
1 0 0 0 60 0 O 1 1
or
R L
[s] = (1] [s]
j i i
where [Ts]- represents station matrix at station i. In matrix notation the
j
equilibrium equation for each field under a distributed load g(x) is
A ] [ 2 -n - S ]
(u r] o o Blar B'(az) D'az Bt y (u )
Y 2y Y 2y m
. A'(an)? cax A'(a2)3y -B'(a2)? -A'(2n)2, i
w 0 1 -a2 3y (=+ 7 ] 7y 1, Kn“ 3 Kl |
' -A'ag -A'(a1)? B'ag A'sr
v 0 0 1 Y 2y ¥ 2 Km
<N } =loo o 1 0 0 0 ) NP
Q 0 0 O 0 1 0 -Kq Q
M 0 0 O 0 AL 1 -Km M
1 0 0 O 0 0 0 1 . 1
(C.5)
where AL AL
vy = B'B"-A'D" ; K = q(e)de Kn £q(g)dg (C.6)
0 0

Values of Km and Kq for various loadings are listed in Table §.

also can be written as

e 32

Equation (C.6)




Table 5 Values of K and Kq for various loadings

Type of Loading Km Kq
Uniform Load
a(x) = q,
2 A
7 q,(az)2/2 G, 22
T i
1 ( j 1
/ Y Y Y
—> x
Cosine Load
= no q,2 q.2
q(x) = g, cos = x Joo L& nn 0 (i NT
o L ™ ( - (cos T %5 7;;{s1n T %
! nn s N _ s N7
m 1 i - cos = x5 ) - e sin ZExg sin == x5 )
x N
— ]
Al

o

R iy

e e IR Voo A i L
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L R
[s] = (1,1 (s (c.7)
i i

i+l

The matrix [Tj]i is called the field matrix.

APPENDIX D: COMPUTATION OF 2., 2., AND a,

For multimodular beams, the following equation is not sufficient to deter-

mine the neutral-surface location z,
_B'M-D'N
Zn © AMCBN (0-1)

even for cases where N = 0

2z B'/A' (D.2)

n

Two more equations are needed for computing z, because the stiffnesses are not

SToeY, N T TR T R Tt

only dependent on z, but they are functions of a. and a, as well, By comparison

of Figures 1 and 2, one can get (for the convex downward case) f

a. = (e,%/e5) (W2 +2) -2 (D.3)

a, = (e,%7e5) (V2 - 2) + 2, (D.4)
For the concave downward case

a. = (&%) (W2 - 2) + 2, (.5)

ay = (%7ef") (/2 + 7)) - 2 (0.6)

The system of nonlinear equations (D.1), (D.3), and (D.4) for the convex down-

ward case, or equations (D.1), (D.5), and (D.6) for the concave downward case,

can be solved by using iteration of the Gauss-Seidel type. _
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